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Answer ALL the questions

I a) Prove that the curvature is the rate of change of angle of contingency with respect to   

      arc length.                                                                                                                

(or)

 b) Show that the necessary and sufficient condition for a curve to be a straight line is that     
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for all points.                                                                                                      [5]

 c) (1) Find the centre and radius of an osculating circle.

     (2) Derive the formula for torsion of a curve in terms of the parameter u.             [8+7] 

(or)

 d) Derive the Serret-Frenet  formulae. Express them in terms of  Darboux vector.      [15]

II a) Show that the circle 
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has three point contact at the          

       origin with a paraboloid 
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with 
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(or)

   b) Derive  the necessary and sufficient condition for a space curve to be a helix.        [5]

  c) If two single valued continuous functions 
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 of the real variable 
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 are given then prove that there exists one and only one space curve determined uniquely except for its position in space, for which s is the arc length, k is the curvature and 
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 is the torsion.  

(or)

   d) Find the intrinsic equation of the curve 
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III a) Derive the equation satisfying the principal curvature at a point on the space curve.

(or)

     b) Prove that the metric is always positive.                                                                [5]

    c) Prove that 
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 is a necessary and sufficient condition for a surface to be    

       developable.                                                                                                                  

(or)

   d) Define developable. Derive polar and rectifying developables associated with a     

       space curve.                                                                                                             [15]

IV a) State and prove Meusnier  Theorem.    

   (or)

     b) Prove that the necessary and sufficient condition for the lines of curvature to be    

          parametric curves is that 
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    c) (1) Derive the equation satisfying the principal curvature at point on a surface.

        (2) How can you find whether the given equation represent a curve or a surface?                  

        (3) Define  oblique and normal section.                                                           [9+2+4]

(or)

   d) (1) Define geodesic. State  the  necessary and sufficient condition that the curve   
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 be a geodesic .             

       (2) Show that the curves 
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are geodesics on a surface with metric  
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.                                                                [5+10]

V a) Prove that the Gaussian curvature of a space curve is bending invariant.              

(or)

     b) Show that sphere is the only surface in which all points are umbilics.                   [5]        

     c) Derive the partial differential equation of surface theory.  Also state Hilbert   

        Theorem.       

(or)

     d) State the fundamental theorem of Surface Theory and demonstrate it with an    

           example.                                                                                                               [15] 
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